Normal view MARC view ISBD view

Introduction to autonomous mobile robots /

by Siegwart, Roland.
Additional authors: Nourbakhsh, Illah Reza, -- 1970- | Scaramuzza, Davide.
Series: Intelligent robotics and autonomous agents Edition statement:2nd ed. Published by : MIT Press, (Cambridge, Mass. :) Physical details: xvi, 453 p. : ill. ; 24 cm. ISBN:9780262015356 (hardcover : alk. paper).
Subject(s): Mobile robots. | Autonomous robots.
Year: 2011 List(s) this item appears in: ECE Senior Projects
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Collection Call number Copy number Status Date due Barcode
Books Books EFFAT UNIVERSITY LIBRARY
General Collection
Non-fiction TJ211.415 .S54 2011 (Browse shelf) c. 1 Available a31111000038511

Includes bibliographical references and index.

Machine generated contents note: 1. Introduction -- 1.1. Introduction -- 1.2. An Overview of the Book -- 2. Locomotion -- 2.1. Introduction -- 2.1.1. Key issues for locomotion -- 2.2. Legged Mobile Robots -- 2.2.1. Leg configurations and stability -- 2.2.2. Consideration of dynamics -- 2.2.3. Examples of legged robot locomotion -- 2.3. Wheeled Mobile Robots -- 2.3.1. Wheeled locomotion: The design space -- 2.3.2. Wheeled locomotion: Case studies -- 2.4. Aerial Mobile Robots -- 2.4.1. Introduction -- 2.4.2. Aircraft configurations -- 2.4.3. State of the art in autonomous VTOL -- 2.5. Problems -- 3. Mobile Robot Kinematics -- 3.1. Introduction -- 3.2. Kinematic Models and Constraints -- 3.2.1. Representing robot position -- 3.2.2. Forward kinematic models -- 3.2.3. Wheel kinematic constraints -- 3.2.4. Robot kinematic constraints -- 3.2.5. Examples: Robot kinematic models and constraints

3.3. Mobile Robot Maneuverability -- 3.3.1. Degree of mobility -- 3.3.2. Degree of steerability -- 3.3.3. Robot maneuverability -- 3.4. Mobile Robot Workspace -- 3.4.1. Degrees of freedom -- 3.4.2. Holonomic robots -- 3.4.3. Path and trajectory considerations -- 3.5. Beyond Basic Kinematics -- 3.6. Motion Control (Kinematic Control) -- 3.6.1. Open loop control (trajectory-following) -- 3.6.2. Feedback control -- 3.7. Problems -- 4. Perception -- 4.1. Sensors for Mobile Robots -- 4.1.1. Sensor classification -- 4.1.2. Characterizing sensor performance -- 4.1.3. Representing uncertainty -- 4.1.4. Wheel/motor sensors -- 4.1.5. Heading sensors -- 4.1.6. Accelerometers -- 4.1.7. Inertial measurement unit (IMU) -- 4.1.8. Ground beacons -- 4.1.9. Active ranging -- 4.1.10. Motion/speed sensors -- 4.1.11. Vision sensors -- 4.2. Fundamentals of Computer Vision -- 4.2.1. Introduction -- 4.2.2. The digital camera -- 4.2.3. Image formation -- 4.2.4. Omnidirectional cameras

4.2.5. Structure from stereo -- 4.2.6. Structure from motion -- 4.2.7. Motion and optical flow -- 4.2.8. Color tracking -- 4.3. Fundamentals of Image Processing -- 4.3.1. Image filtering -- 4.3.2. Edge detection -- 4.3.3. Computing image similarity -- 4.4. Feature Extraction -- 4.5. Image Feature Extraction: Interest Point Detectors -- 4.5.1. Introduction -- 4.5.2. Properties of the ideal feature detector -- 4.5.3. Corner detectors -- 4.5.4. Invariance to photometric and geometric changes -- 4.5.5. Blob detectors -- 4.6. Place Recognition -- 4.6.1. Introduction -- 4.6.2. From bag of features to visual words -- 4.6.3. Efficient location recognition by using an inverted file -- 4.6.4. Geometric verification for robust place recognition -- 4.6.5. Applications -- 4.6.6. Other image representations for place recognition -- 4.7. Feature Extraction Based on Range Data (Laser, Ultrasonic) -- 4.7.1. Line fitting -- 4.7.2. Six line-extraction algorithms

4.7.3. Range histogram features -- 4.7.4. Extracting other geometric features -- 4.8. Problems -- 5. Mobile Robot Localization -- 5.1. Introduction -- 5.2. The Challenge of Localization: Noise and Aliasing -- 5.2.1. Sensor noise -- 5.2.2. Sensor aliasing -- 5.2.3. Effector noise -- 5.2.4. An error model for odometric position estimation -- 5.3. To Localize or Not to Localize: Localization-Based Navigation Versus Programmed Solutions -- 5.4. Belief Representation -- 5.4.1. Single-hypothesis belief -- 5.4.2. Multiple-hypothesis belief -- 5.5. Map Representation -- 5.5.1. Continuous representations -- 5.5.2. Decomposition strategies -- 5.5.3. State of the art: Current challenges in map representation -- 5.6. Probabilistic Map-Based Localization -- 5.6.1. Introduction -- 5.6.2. The robot localization problem -- 5.6.3. Basic concepts of probability theory -- 5.6.4. Terminology -- 5.6.5. The ingredients of probabilistic map-based localization

5.6.6. Classification of localization problems -- 5.6.7. Markov localization -- 5.6.8. Kalman filter localization -- 5.7. Other Examples of Localization Systems -- 5.7.1. Landmark-based navigation -- 5.7.2. Globally unique localization -- 5.7.3. Positioning beacon systems -- 5.7.4. Route-based localization -- 5.8. Autonomous Map Building -- 5.8.1. Introduction -- 5.8.2. SLAM: The simultaneous localization and mapping problem -- 5.8.3. Mathematical definition of SLAM -- 5.8.4. Extended Kalman Filter (EKF) SLAM -- 5.8.5. Visual SLAM with a single camera -- 5.8.6. Discussion on EKF SLAM -- 5.8.7. Graph-based SLAM -- 5.8.8. Particle filter SLAM -- 5.8.9. Open challenges in SLAM -- 5.8.10. Open source SLAM software and other resources -- 5.9. Problems -- 6. Planning and Navigation -- 6.1. Introduction -- 6.2. Competences for Navigation: Planning and Reacting -- 6.3. Path Planning -- 6.3.1. Graph search -- 6.3.2. Potential field path planning

6.4. Obstacle avoidance -- 6.4.1. Bug algorithm -- 6.4.2. Vector field histogram -- g t g t g t g t g t g t g t g t g t g t g t g t g t t g t t t t t

There are no comments for this item.

Log in to your account to post a comment.
Your library | Borrowing books | Borrowing laptops | Borrowing iPads | Borrowing kindles | Contact Effat Library Facebook page New Books RSS Feed Effat University | LinkedIn
Copyright © 2013 Effat University Library, P.O.BOX 34689, JEDDAH 21478, Saudi Arabia, Tel. +966 2 636 4300 Webmaster
//